
r is the latent of vaporization; 
t is the time; 
X is the point of the plane; 
x i is the longitudinal coordinate; 
x 2 is the t ransverse  coordinate; �9 
At is the step in time; 
H is the step along xi; 
H2 is the step along x2; 
e is the parameter  of difference scheme. 

I n d i c e  

0 i s  
s i s  

m i s  
w i s  

h i s  

1. 

2. 

3. 

4. 
5. 
6. 
7. 

s 

the initial; 
the boundary; 
the number for  time point; 
the number for coolant parameters ;  
the number for grid function. 
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M E T H O D  OF 

H E A T - A N D  

P R O B L E M S  

E X T E N S I O N  OF T H E  DOMAIN OF 

M O I S T U R E  - C O N D U C T I O N  

I. Z. A k t u g a n o v  UDC536.24.02 

A method based on extension of the domain of the problem is applied to the solution of parabolic 
differential equations in heat-  and moisture-conduction problems. 

There is a well-known method for the solution of elasticity problems by extension of the domain of defini- 
tion [1, 2]. A similar  approach is possible in heat-  and moisture-conduction problems for the solution of dif- 
ferential  equations of parabolic type. 

Let it be required to determine a function T(r ,  T) continuous and defined in a closed domain D, in which 
i t  satisfies the differential equation 

OT(r, ~) =~av2T(r , ~)+(p(r,  T), (1) 
O~ 

the initial condition 

v (r) = T (r~ 0 ) ,  
(2) 

Novosibirsk Institute of Rail Transportation Engineers. Translated from Inzhenerno-Fizicheskii ,Zhur- 
nal, Vol. 34, No.2, pp. 351-356, February, 1978. Original art icle submitted February 2, 1977. 
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and the following boundary conditions on the surface  S bounding D: 

o r  (r, ~) s -4- fiT (r, "c) s = ~I~P (P, ~), (3) 
a ,  On ' 

where r is the position vec tor  of a point with coordinates {x, y ,  z}; a is a pa r ame te r  charac ter iz ing  the p r o p e r -  
t ies of the domain D; and a, fl ,  T, are  p a r a m e t e r s  used for var ia t ion of the boundary conditions; in par t icular  
for  heat-conduct ion problems condition (3) goes over  to a Dirichlet  boundary condition for  the set  of pa rame te r s  
(~= 0, fl= 1, y =Ti ,  ~ = @l), to a Neumann condition for  (~= ~2, fl= O, T = T2, ~b = r and to  a Cauchy condi- 
tion for  (a = a3, ~ = fl 3, T = Ta, ~b = r 

In place of the original  domain D we consider  unbounded space and delineate in it the domain B bounded 
by a surface ~ congruent  with the surface S of the original  domain D. We also identify a closed surface F ex -  
t e r io r  to the domain B. 

We seek a function 0(r,  r) defined in unbounded space and sat isfying the differential  equation 

O0 (r, x) = av20 (r, ~) + ~ (r, T) + q (r, T) (4) 
aT 

and the initial condition 

v (r) = 0 (r,  0).  (5)  

We impose the following constraints  on the functions ~(r, r) ,  q(r ,  T), and v(r): 

1) The functions ~(r,  7) and v(r) have the same values in B as in problem (1)-(3) and are  equal to zero 
outside B. 

2) The function q(r ,  r) is nonvanishing only on the surface F. 

We invoke the Green ' s  function G(r - r0, r - t), which is the solution of the equation 

d e ( r - - r  o, "c--t) = avZG(r--r  o, ~ - - t )  + 8 ( r - - r  o, r - - t )  (6) 
Or 

for  unbounded space with a homogeneous initial condition. In Eq. (6) 5(r -- r0, r - t) is the Dirac delta func- 
tion. 

Now the solution of problem (4)-(5) can be wri t ten in the form 

0 F (7) 
T 

0 D D 

We determine the unknown function q(r0, t) on the basis of sat isfying the boundary condition (3) on the 
surface ~ of unbounded space:  

OO (r, ~) a l (z On -~ ~O (r, ~) -- ~r (P, ~). (s) 

Determining the value of the function 8(r, r) f rom express ion  (7) for the appropriate  values of the vec tor  
r ,  we substitute it into Eq. (8) along with the gradient  

2 g 

" 4 - S [ ~ Y t P ( r o '  t)cgG(r--r~ T - - t )  dV]dt  + ~ v(r~ O G ( r - r ~  T) On 

0 D D 

(9) 

As a resu l t ,  we obtain an integral  equation for a point of the surface ~ with respec t  to thefunct ionq(r  0, t): 
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where 

i{~'eSq(ro, t)[[~G(r--ro' ~--t)-I-o~OO(r---~n'T--t)]dF}dt~-H(r,~.), (lO) 

H(r, I)=~(P,~;)--~{SSS~(ro, t)[~G(r--ro, I--t)d- 
o D 

+~ aa(r - - r  o, x-- t )  an : ] an ] dV} dt - -  ~ v(r~ [ ~ G ( r - r ~  ~) + ~ OG(r-r~  ~) 

D 

(ii) 
dV. 

The appl icat ion of condition (10) to the function q( r ,  7) e n s u r e s  identi ty of the solutions T ( r ,  r) and 0(r ,  
7) in the congruent  domains  D and B: 

T (r, ~) ~- 0 (r, ~). (12) 

Thus ,  in both p r o b l e m s  the init ial  condit ions,  the function ~(r ,  r) in the in te r io r s  of D and B, and the 
boundary conditions on the i r  s u r f ace s  S and ~ a re  ident ical ,  and the function q(r, 7) vanishes  in the in te r io r  
of B. 

Equation (10) is a F redho lm in tegra l  equation in the var iab le  r and a Vo l t e r r a  in tegra l  equation in the 
t ime  7. Consequently,  the p r o b l e m  of finding a solution to the d i f ferent ia l  equation (3) in a closed domain re  / 
duces  to the p r o b l e m  of finding a solution of the in tegra l  equation (10) for  the function q(r ,  7). In this r e s p e c t  
the given method is s i m i l a r  to the method of t he rmodynamic  potent ials .  

We now d i scuss  one of the poss ib le  means  of solving Eq. (10); the method r e l i e s  on putting the p r o b l em in 
d i s c r e t e  fo rm.  We over l ay  the su r face  f~ with a grid having a definite mesh  configuration.  We assoc ia te  with 
e v e r y  node i (i = 1, n) of the grid with coord ina tes  r i on ~2 a node j (j =1 ,  n) with coordinate  r j  on F. In place 
of the continuous function q( r ,  7) we cons ider  a d i s c r e t e  function Q(r j ,  r ) ,  which is nonvanishing only at  the n 
nodal points of the su r face  F. We define it  as  the in tegra l  value of the function q( r ,  7) ove r  an e l emen t  fj of F: 

Q(~J' ~)= ,l'.I q(~' ~)dF: (13) 
fj 

We requ i re  sa t i s fac t ion  of the boundary condition (8) at  a finite number  n of nodes of the sur face  ~ -- S. 
As a r e su l t ,  we obtain a s y s t e m  of Vol te r ra  in tegra l  equations for  the de te rmina t ion  of Q(r j ,  v) (j =1,  n), w r i t -  
ing i t  in the m a t r i x  f o r m  

T 

[L (~ - -  t)] {Q (t)} dt = {H (~)}, (14) 
0 

where  

{Q(t)}r= {Q(r,, t), Q(r2, t) . . . . .  Q(rj, t) . . . . .  Q(r~, t)}; (15) 

{/1, (Z)}T := {H (r t, T), /-/(r 2, T) . . . . . .  /-] (rl, ~) . . . . .  H (r,, T)}; 

iLl1 (T-- t) Lt2(x - -  t) �9 . �9 Lli (~--  t) . �9 . Lln (~ " t) ,[ 

t L ,  I (~- - t )  L ,~ (~-  t ) . . .  L ~ j ( ~ - - t ) . . .  L , , ( ~ -  t) 1 

(16) 

(17) 

The e lements  of the m a t r i x  (17) a re  specif ied by the re la t ions  

Lii (~-- t )~[~iG(rl - -r j ,  T - - t ) ~ a ~  OG(ri--rJ' ~ - - t )  (i, ]=  1, n). (18) 
Oni 

The e l emen t s  of the vec to r  {H(T)} a r e  given by expres s ion  (11), to which an appropr ia te  quadra ture  formula  is 
appl icable ,  depending on the f o r m  of the functions ~( r ,  z) and v(r) .  In pa r t i cu l a r ,  we can use the d i sc re t i za t ion  
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! 

procedure  descr ibed  above to par t i t ion the domain D into l e lements  of volume dp (p = 1, l) in such a way 
that 

l 

D =  '~  dp. 
p~ ! 

We specify the coordinates  of the centers  of the e lements  dp as follows: 

In the special  case 

(19)  

rpv= .liS iv(r)rdV / i~ji.f v(r)dV; (20) 

'vv:= SSS r ~)rdV t i'SS 9(r. T,)dV. (21) 
dp dp 

v(r) = v,  ~o(r, T) = ~0(T) the cen te r s  of the e lements  coincide with the geometr ic  centers :  

r p  :=- rpu  = rpr  (22) 

In place of the dis t r ibuted functions v(r) and ~0(r, r) we consider  the d i sc re te  functions V(r ) and q~(r , T), P P 
which are  defined as the integral  values of the functions v(r) and ~0(r, r) over  the individual e lements  dp and 
are  applied at the points rpv and rpr 

V(rp~) ----- ~!.Io(r)dV (P = 1,-~); 

SSS @ (%~, ~) = ~ (r, T) dV (p = 1, l). 

(23) 

(24) 

Then 

H (r~, "0 = 7r  (Pi,  "0 - -  j" ~ (rye, t) i6  (r~ - -  %,p, �9 - -  t) + 
p ~ l  0 

] ' [ ~ 6(r'-- ~)] O G(Q--rp~, T--t) d t - - ~  V (rw) ~JG(Q--rp~, x)@cz, ~ rpu, . 
l:,.~4 

(25) 

Bear ing in mind that the kernels  of the integral  equat ions,  Lij (~- - t), depend on the difference (~- - t), 
we can reduce  the sys tem (14) to a sys tem of o rd inary  different ia l  equations with constant coefficients or solve 
it  by the Laplace t r ans fo rm.  However ,  f rom the standpoint of computer  implementat ion of the problem it is 
more  prac t ica l  to solve the sys tem (14) numerical ly .  

In the ma t r ix  equation (14) we replace  the var iab le  interval  of integrat ion by a finite interval  [0, rm] and 
par t i t ion it  into m subintervals ,  not neces sa r i l y  of equal length: 

m--1%h+1 
~ [L (%~ - -  t)] {Q (t)} at = {H (x,~)}. (26) 

k = 0  't:b. 

We invoke the Kry lov-Bogolyubov  theorem of the mean [3] in o rde r  to r ep r e sen t  the integral  components 
of Eq. (26) in the fo rm 

xh +1 

S Q (rj, t) Li~ (xm-- t) dt = Q (r i, ~-k) YiJ (Tin, rk, "rh+t), (27) 
x h 

where  

~ h + i  

Nij(Tm, Th, Xk+l) = .f LU(%~-- t) clt, (28) 
"C h 

and Q(rj ,  ~k) r ep re sen t s  the mean value of Q(r j ,  t) in the in terval  [rk, Tk+l]. 

The quantity Q(rj ,  ~k) can be expres sed  in t e rm s  of the values of Q(r j ,  t) at the endpoints of the interval:  

l (29) Q (ri, ~k) = ~ [Q (ri, Tk) + Q(rj, Th+l) ]. 
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Using re la t ions  (27)-(29), we can rep lace  the m a t r i x  integral  equation (14) by the a lgebra ic  equation 

m - - I  
I ~ (30) [N(z~, ~ ,  "~k+~)l{q(T~) + q(~+,)} = {H(,~)}. 

By simple t r ans fo rma t ions  we reduce  Eq. (30) to the fo rm 

[N(~.,, T~_,, -~,.)1 {Q (-c,.)} = 2 { H ( ~ , . ) } - -  [N('~m, n ,  "q)] {Q(Zo)} - -  
m - 2  131) 

-- ~ IN(~, za-,, zk) -t- N(~,  z~, zk+i)llQ (zh)}" 
h = l  

The values of the function {Q(Tm) } for  d i sc re t e  t imes  are  de te rmined  by solving the r ecu r s ive  ma t r ix  
equation (31), in which the values  of the vec to r  {I-I('rm)} a re  given by the re la t ion 

m-- I  I 
1 

132) 
- -  V(rpu) ~iG(Q--rpv , "era ) + tZ, ~ - -  r~v, , 

p'-I 

in which 

Th+l 

rh  

0 G (r i--  rp~, xm-- t)] dt. ~,6(r~--%., 3.,--t)+ =i (33) 

The values of T(r, r) satisfying Eq. (i) and the initial and boundary conditions (2) and (3) are determined 
by inserting the values of ~Q(rm)} into relation (7), which by analogy with the foregoing situation we reduce to 
the form 

m - - I  t$ 

0(r, "t'm) ----- 0.5 Z ' ~  [Q(r.h Tk) + Q(r], l~h+].)] NQ('r m, 1~ k, Tk.,l) + 
/z=0 /=t 

m-- I  I l 

+ 0.5 ~ ~ [~(~, n) + ~ (~ ,  ~+,)1N~ (~, n, n+,) + ~ V(~) 0 (~-- ~ ,  ~), 
k=O p ~ I  P ~ I  

(34) 

where  

Th+I 

NQ (~m, ~k, Tk+,) = J" G ( r - -  rj, ~,~-- t) dt; (35) 

~h+l 

N~(~, ~h, ~k+,)= j" G(r- -rp~ ,  %~-- t )d t .  (36) 
~k 

The proposed method has the advantage over  f in i te -d i f fe rence  and f in i te -e lement  methods that integration 
over  the domain is rep laced  by integrat ion over  the boundary. This  fea ture  significantly lowers  the o rde r  of 
the resolvents .  Also,  the sys tem of integral  equations has a g rea t e r  stability of solution than the different ial  
equations. 

In the a r t ic le  we have ignored the pa r t i cu la r  se lect ion of configuration and position for  the surface F,  as 
well  as es t imat ion of the e r r o r  of the solution as a function of the o rde r  of the sys tem of equations (31); these 
problems  are  to be the subject  of a special  study. 

N O T A T I O N  

t, T 
x, y ,  z 
r 

T( r ,  v), e(r,  r) 

a re  the t ime ;  
a re  the coordinates ;  
is the posit ion vec tor ;  
a re  the functions to be determined;  
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q( r ,  r ) ,  v ( r ) ,  r  'r) 
D 
S 
]3 
~q 

F 
n 

19 
a ,  o~, /~, "y 
G(r - ro, T - t) ,  

5(r  - r0, r -  t) 
q(r ,  T) 

a re  the given functions;  
~s the p rob lem domain;  
is the sur face  bounding D; 
xs the domain congruent  with D; 
xs the su r face  congruent  with S; 
xs the sur face  e x t e r i o r  to B; 
xs the outward no rma l  to a sur face ;  
is the point on the sur face  S; 
a re  the p a r a m e t e r s ;  
is the G r e e n ' s  function for unbounded space;  
is the Di rac  delta function; 
is the function, nonvanishing only on the sur face  F. 

2. 

3. 
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L I N E A R  D E F I N I N G  E Q U A T I O N S  IN H E A T - C O N D U C T I O N  

T H E O R Y  W I T H  F I N I T E  T H E R M A L - 1 9 E R T U R B A T I O N  

V E L O C I T Y  

V.  L .  K o l p a s h c h i k o v  a n d  A.  I .  S h n i p  UDC 536.2:536.7 

A modif icat ion to the genera l  theory  of hea t  conduction with finite t h e r m a l - p e r t u r b a t i o n  ve loc i ty ,  
in whicta the l inear  defining equations a re  not the rmodynamica l ly  forbidden is proposed.  

In [1] Gurt in  and Pipkin developed a genera l  t he rmodynamic  theory  of hea t  conduction a s suming  p ropaga -  
tion of the t h e r m a l  pe r tu rba t ions  at finite veloci ty.  In the f r a m e w o r k  of this theory ,  they cons idered  l inear  de-  
fining equations which lead to a l inear ized  heat -conduct ion equation - in fact ,  an equation of hyperbol ic  type. 
However ,  the re la t ion  between the heat  flux i t se l f  and the in ternal  ene rgy  in this theory  is not sa t is f ied by the 
l inear  defining equations cons idered  in [1], and t he re fo re  the resu l t ing  l inear ized  heat-conduct ion may only be 
used with g rea t  inaccuracy ,  as a ve ry  rough guide. 

The p r e s e n t  paper  outl ines a modif icat ion of the G u r t i n -  Pipkin theory  such that  the l inear  defining equa-  
t ions (in fac t ,  in t e r m s  of new independent va r iab les )  a re  not the rmodynamica l ly  forbidden. 

In the Gurt in-19ipkin theory the defining equations specify at  some point x and t ime  t the values  of the f r ee  
energy  ~, en t ropy 7, and hea t  flux q,  in t e r m s  of the t e m p e r a t u r e  at t ime  t,  the total  h i s to ry  of the t e m p e r a t u r e  
~ t ,  and the total  h i s to ry  of the t e m p e r a t u r e  gradient  ~t 

r ~ ( ~ ,  ~t, ~), 

~l : ~l (8,  ~t, gt), (1) 

q = ~ (~ ,  ,~t g~). 

The total  h i s to r i e s  ~t and ~t a re  defined as follows: 
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