r is the latent of vaporization;

t is the time;

X is the point of the plane;

X4 is the longitudinal coordinate;

X3 is the transverse coordinate; -

At is the step in time;

H is the step along x;

H2 is the step along x,;

€ is the parameter of difference scheme.

Indices

0 is the initial;

s is the boundary;

m is the number for time point;

w is the number for coolant parameters;
h is the number for grid function.
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METHOD OF EXTENSION OF THE DOMAIN OF
HEAT~ AND MOISTURE-CONDUCTION
PROBLEMS

I. Z. Aktuganov UDC 536.24.02

A method based on extension of the domain of the problem is applied to the solution of parabolic
differential equations in heat- and moisture-conduction problems.

There is a well-known method for the solution of elasticity problems by extension of the domain of defini-
tion [1, 2]. A similar approach is possible in heat- and moisture-conduction problems for the solution of dif-
ferential equations of parabolic type.

Let it be required to determine a function T(r, T) continuous and defined in a closed domain D, in which
it satisfies the differential equation

T =ay?T(r, ©)+ () Vs 1)
dr
the initial condition

(2)
v{r)=T(r{ 0)»

Novosibirsk Institute of Rail Transportation Engineers. Translated from Inzhenerno-Fizicheskii,Zhur-
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and the following boundary conditions on the surface S bounding D:
o oT (r, 1)
on

+BT(r )
s

> (P, 1) (3)

where r is the position vector of a point with coordinates {x, v, z}; a is a parameter characterizing the proper-
ties of the domain D; and @, 8, ¥, are parameters used for variation of the boundary conditions; in particular
for heat-conduction problems condition (3) goes over to a Dirichlet boundary condition for the set of parameters
(@=0, B=1, y=1v;, ¥ =¥;), to a Neumann condition for (¢ =, 8= 0, ¥ = vy, $ = ¥;), and to a Cauchy condi-
tion for (@ =05, B=B3, Y= ¥3, ¥ = ¥3).

In place of the original domain D we consider unbounded space and delineate in it the domain B bounded
by a surface 2 congruent with the surface S of the original domain D. We also identify a closed surface F ex-~
terior to the domain B.

We seek a function 6(r, 7) defined in unbounded space and satisfying the differential equation

_ai%'_i)_ —ay®d(r, D+ 90 D+ D (4)
T

and the initial condition
v(r)=0(r, 0). (5)

We impose the following constraints on the functions ¢(r, 7), q{r, 7), and v(r):

1) The functions ¢(r, 7) and v(r) have the same values in B as in problem (1)~(3) and are equal to zero
outside B.

2) The function g(r, 7T) is nonvanishing only on the surface F,
We invoke the Green's function G(r — ry, 7 — t), which is the solution of the equation
G (r —ry 1—1)
ot

for unbounded space with a homogeneous initial condition. In Eq.(6) 6(r — ry, 7 — f) is the Dirac delta funec-
tion.

=ay*G(r—ry T—1)+8(r—rp T—1) {6)

Now the solution of problem (4)-(5) can be written in the form

T

6(r, ©) = J[Xqu(ro. HG(r—r,, r—t)dFJdt—i— -

T ’ 2
T U“q,(,“, HG(r —r4 r—t)dV]dt»;— va(ro)G(r—ro, 7)dV.
2 °b “b
We determine the unknown function g(ry, t) on the basis of satisfying the boundary condition (3) on the
surface £ of unbounded space:

@ a0 (r, 1)

_ _ (8
= TH (P, 1) )

+po(r, )
o e

Determining the value of the function 8(r, 7) from expression (7) for the appropriate values of the vector
r, we substitute it into Eq.(8) along with the gradient

B v _ f[j‘gq(r‘,, f Gl —ry v=1) dF]dH—
P s

on on

0
+SU”“’(’°’ ‘)wdv] dt + S“ o(ry 8= D 4y
on on
¢ D 5

As a result, we obtain an integral equation for a point of the surface @ with respect to the functiong(ry, t):

9



ﬁ”qﬁ ) [w(r—“’ T"”“‘W} dF}dt?H(r’ 7), (10)
0 F

where
T

Hmrhwwaﬂ—5U£ﬁmJﬂmvnmr—n+

(1)

—I—G aG(r—-rov T——f) ]dV} dt _SSjv(ro) [ﬁc(r_ro’ 1:) + o M] dV.
dn on
D
The application of condition (10) fo the function q(r, 7) ensures identity of the solutions T(r, 7) and o(r,
T) in the congruent domains D and B:

T(r, ©)=0(r, 1) 12)

Thus, in both problems the initial conditions, the function ¢(r, 7) in the interiors of D and B, and the
boundary conditions on their surfaces S and & are identical, and the function q(r, 7) vanishes in the interior
of B.

Equation (10) is a Fredholm integral equation in the variable r and a Volterra integral equation in the
time 7. Consequently, the problem of finding a solution to the differential equation (3) in a closed domain re-
duces to the problem of finding a solution of the integral equation (10) for the function q(r, 7). In this respect
the given method is similar to the method of thermodynamic potentials.

We now discuss one of the possible means of solving Eq. (10); the method relies on putting the problem in
discrete form. We overlay the surface © with a grid having a definite mesh configuration. We associate with
every node i (i =1, n) of the grid with coordinates r; on &2 a node j (j =1, n) with coordinate rj on F. In place
of the continuous function q(r, 7) we consider a discrete function Q(rj, 7), which is nonvanishing only at the n
nodal points of the surface F. We define it as the integral value of the function q(r, 7) over an element fj of F:

Qrp = {{ g dF. (13)
3

We require satisfaction of the boundary condition (8) at a finite number n of nodes of the surface & =8,
As a result, we obtain a system of Volterra integral equations for the determination of Q(rj, 7) (j =1, n), writ-
ing it in the matrix form

(La—m@eoyd=H@, (14)
0
where
QY = {Qrw D QU D s Qn B - -» Qws DY 19)
{H (T)}T = {H(fiv ) H("zy T -, Hry ) -0 H(ry, T)}; | (16)

Ly—18 Ly@—1f .. Lyc—1 ... Ly (t—17
Lyy(t—18) Ly @—1) . .- Ly(@—1 ... Ly (t—1) |

LE—D=

......
................

Ly (x—1) Liz(r~t)...Lij(r__t)...Li'n(r—t)j‘ an
LaGx—1) Lt—1)... Ljex—1)... L, (t—1

The elements of the matrix (17) are specified by the relations

G (ri—rjp T—1)
on,

The elements of the vector {H(T)} are given by expression (11), to which an appropriate quadrature formula is

applicable, depending on the form of the functions ¢(r, 7) and v(r). In particular, we can use the discretization

G j=1, n). (18)

Lija—8=8G(r;—rjp 1—t)+o
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procedure described above to partition the domain D into I elements of volume dp (p =1, ) in such a way
that

D= d (19)

We specify the coordinates of the centers of the elements dj, as follows:

Tpy = des v(ryrdv / 3455 v(r)dV; 20
o »
Top = Sd” @ 1) rdV/ U;;\ @(r, T)dV. 21y
»

In the special case v(r) =v, ¢(r, T) = ¢(7) the centers of the elements coincide with the geometric centers:

=Ty 22)

Ip=Tr P’

Py

In place of the distributed functions v(r) and ¢(r, 7) we consider the discrete functions V(r,) and 'b(rp, 7y,
which are defined as the integral values of the functions v(r) and ¢(r, 7) over the individual elements dp and
are applied at the points Tpy and rpp:

Virg) = [{forav (p =11y 23)
d

D(rpgr T) = L{S o(r, HdV (p=1, I). o

Then

I T
Hri 1) =79 (Ps 1)——2 jlm(rp‘p’ ) [BiG(fi—’mr T—)+
= | 25)

:
Ry 2 G(r,—rpp T—1) ]dt“‘E V (rp0) [ﬁG(’i—fpu’ e Glri—rpw T)] :
on oy

Bearing in mind that the kernels of the integral equations, Ljj(r — 1), depend on the difference (1 — 1),
we can reduce the system (14) to a system of ordinary differential equations with constant coefficients or solve
it by the Laplace transform. However, from the standpoint of computer implementation of the problem it is
more practical to solve the system (14) numerically.

In the matrix equation (14) we replace the variable interval of integration by a finite interval [0, T} 2nd
partition it into m subintervals, not necessarily of equal length:

S L r, — 01(Q@) df = (H (5.} (26)

k=0 7Tp

We invoke the Krylov—Bogolyubov theorem of the mean [3] in order to represent the integral components
of Eq. (26) in the form

Tk
5' Q(rys B Lij(m—t)dt = Q(rs &) Nij(Tms Tuo Tirt)s en
Tk
where
Tk-kl
Nij(Tr o T = | Lij (v — ) dts (28)

23
and Q(rj, &) represents the mean value of Q(rj, t) in the interval [T}, T 41l

The quantity Q(r;, &) can be expressed in terms of the values of Q(r;, t) at the endpoints of the interval:
i sk J

Qry &) = 29)

o —

QR w) + Qs Trigl-



Using relations (27)-(29), we can replace the matrix integral equation (14) by the algebraic equation

m—1
—é—. 2 IV (T Tas Taa )1 {Q (1) + Q (T} = {H (5,0))- (30)
k=0

By simple transformations we reduce Eq. (30) to the form

[N (Tm' Tm-—i’ Tm)] {Q (Tm)} = 2 {H (Tm)}— [N (Tm’ tO' Tl)] {Q (To)} - (31)
m—2
— 2 IN(tps Ty W)+ N(Tm’ Tos To )} {Q (7))

k=1

The values of the function {Q('rm)} for discrete times are determined by solving the recursive matrix
equation (31), in which the values of the vector {H(‘rm)} are given by the relation

m—1 !
H{ri t) = vW(Pi Tm)— —;* 2 Elq’(qup To) + O por Tas) Vi B Tas Trat) —
k=0 p=1
1 8 (32)
- 2 V{rpw [BiG(ri —Tpp Tm) + % —% G(ri —Tpp T ],
p=1 :
in which
Thyr
Np (Tt T Tasd) = S {ﬂiG(’i—"pw Tp,— B+ a; -;—G(r;——rm,, T— t)] di. : (33)

TR

The values of T(r, 7) satisfying Eq. (1) and the initial and boundary conditions (2) and (3) are determined
by inserting the values of {Q(‘rm)} into relation (7), which by analogy with the foregoing situation we reduce to
the form ’

m—1

o(r, 1,) =0.5 2 ﬁ Qs )+ Qry %I No(T Twr Toys) +

=0 j=I
(34)
m—1 1 {
+0.5 2 2 [@{r po» T + P pge Tees)] Ncp (Tmr Tor Taan) + Z V(rpu)G(r_rpu’ T
E=0 p=I p=1
where
‘[h'tl .
No (T Ty Tratd = ‘ G(r—r; 1, — D d; (35)
“k
thfx
No(Tm T Thyt) = _s G(r —Ipg Tp—bdt. (36)
"k,

The proposed method has the advantage over finite-difference and finite-element methods that integration
over the domain is replaced by integration over the boundary. This feature significantly lowers the order of
the resolvents. Also, the system of integral equations has a greater stability of solution than the differential
equations. :

In the article we have ignored the particular selection of configuration and position for the surface F, as .
well as estimation of the error of the solution as a function of the order of the system of equations (31); these
problems are to be the subject of a special study.

NOTATION
t, 7 are the timeg'
X, V, Z are the coordinates;
r is the position vector;

T@, 7)), 6(r, ) are the functions to be determined;



o(r, 7), v(r), $(P, T)  are the given functions;

D is the problem domain;

S is the surface bounding D;

B is the domain congruent with D;

Q2 is the surface congruent with S;

F is the surface exterior to B;

n is the outward normal to a surface;

P is the point on the surface S;

a,c, B,y are the parameters;

G = ry, T — 1), is the Green's function for unbounded space;
O(r — 1y, T— 1) is the Dirac delta function;

qalr, 7 is the function, nonvanishing only on the surface F,
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LINEAR DEFINING EQUATIONS IN HEAT-CONDUCTION
THEORY WITH FINITE THERMAL-PERTURBATION
VELOCITY

V. L. Kolpashchikov and A, I. Shnip UDC 536.2:536.7

A modification to the general theory of heat conduction with finite thermal-perturbation velocity,
in which the linear defining equations are not thermodynamically forbidden is proposed.

In [1] Gurtin and Pipkin developed a general thermodynamic theory of heat conduction assuming propaga-
tion of the thermal perturbations at finite velocity. In the framework of this theory, they considered linear de-
fining equations which lead to a linearized heat-conduction equation — in fact, an equation of hyperbolic type.
However, the relation between the heat flux itself and the internal energy in this theory is not satisfied by the
linear defining equations considered in [1], and therefore the resulting linearized heat-conduction may only be
used with great inaccuracy, as a very rough guide. ‘

The present paper outlines a modification of the Gurtin— Pipkin theory such that the linear defining equa-
tions (in fact, in terms of new independent variables) are not thermodynamically forbidden.

In the Gurtin— Pipkin theory the defining equations specify at some point x and time t the values of the free
energy ¥, entropy 7, and heat flux q, in terms of the temperature at time t, the total history of the temperature
31:, and the total history of the temperature gradient Et

b=P ¥, g,
n=1(, 9, ¢) @
a=q(® o, g)

The total histories 3 and gt are defined as follows:
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